Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
In Silico Pharmacol ; 12(1): 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327875

RESUMO

Bidens pilosa L. has been traditionally used as an anti-diabetic herbal medicine; however, its mechanism of action remains elusive. In this study, the potential role of B. pilosa compounds on alpha-amylase inhibition and regulation of multiple pathways was investigated via computational and experimental studies. The phytocompounds were retrieved from plant databases and published literature. The druggability profile of these compounds was predicted using MolSoft. The probable targets of these phytocompounds were predicted using BindingDB (similarity index ≥ 0.7). Further, compound-gene set-pathway and functional enrichment analysis were performed using STRING and KEGG pathway databases. The network between compound-protein-pathway was constructed using Cytoscape. Molecular docking was performed using AutoDock Vina, executed through the POAP pipeline. The stability of the best docked complex was subjected to all-atom molecular dynamics (MD) simulation for 100 ns to investigate their structural stabilities and intermolecular interactions using GROMACS software. Finally, B. pilosa hydroalcoholic extract was subjected to LC-MS and tested for dose- and time-dependent alpha-amylase inhibitory activity. Out of 31 bioactive compounds, 13 were predicted to modulate the human pancreatic alpha-amylase (AMY2A) and 12 pathways associated with diabetes mellitus. PI3K-Akt signaling pathway (hsa04151) scored the lowest false discovery rate by triggering 15 genes. Further intermolecular interaction analysis of the docked complex revealed that Brassidin had the highest active site interaction and lowest binding energy compared to standard acarbose, and MD reveals the formation of a stable complex throughout 100 ns production run. LC-MS analysis revealed the presence of 13 compounds (targeting AMY2A) in B. pilosa hydroalcoholic extract, which showed potent AMY2A inhibition by in vitro studies that corroborate in silico findings for its anti-diabetic activity. Based on these findings, enriched fractions/pure compounds inhibitory activity that can be performed in future for drug discovery. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00187-9.

2.
Ecotoxicol Environ Saf ; 272: 116083, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350220

RESUMO

Various strategies have been explored to mitigate the impact of harmful algal blooms (HABs). While chemical and physical methods have traditionally been employed to regulate microalgal growth, their prolonged adverse effects on the ecosystem are a cause for concern. Recognizing the integral role of macroalgae within the ecosystem, this study reveals the anti-algal properties of solvent-based extracts derived from the red macroalga Pyropia haitanensis as a means of preventing microalgal blooms. In our investigation, we initially assessed the growth-inhibitory effects of methanol and acetone extracts from P. haitanensis on five microalgae known to contribute to bloom-formation. Significantly reduced growth was observed in all microalgal species when inoculated with both methanol and acetone extracts. Further analysis revealed the effectiveness of the methanol extract (ME), and further fractionation with petroleum ether (PE), ethyl acetate (EA), and n-butanol (NB) for testing against Skeletonema costatum and Pseudo-nitzschia pungens. The methanol fractions exhibited strong inhibition, resulting in the complete elimination of both microalgae after 96 hours of exposure to PE, EA, and NB extracts. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the ME and its solvent fractions identified 49 confirmed compounds. These compounds are likely potential contributors to the observed inhibition of microalgal growth. In conclusion, our findings suggest that solvent extracts from P. haitanensis possess substantial potential for the control of HABs, offering a promising avenue for further research and application in ecosystem management.


Assuntos
Microalgas , Rodófitas , Alga Marinha , Solventes , Ecossistema , Metanol , Acetona , Proliferação Nociva de Algas
3.
Heliyon ; 10(2): e24907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304787

RESUMO

Momordica charantia, Nigella sativa, and Anethum graveolens are established medicinal plants possessing noted anti-diabetic and anti-obesity properties. However, the molecular mechanisms underscoring their inhibitory effects on pancreatic lipase, α-glucosidase, and HMG-CoA reductase remain unexplored. This study aimed to elucidate the efficacy of various NS, MC, and AG blends in modulating the enzymatic activity of pancreatic lipase, HMG-CoA reductase, and a-glucosidase, utilizing an integrative approach combining in vitro assessments and molecular modeling techniques. A factorial design matrix generated eight distinct concentration combinations of NS, MC, and AG, subsequently subjected to in vitro enzyme inhibition assays. Molecular docking analyses using AutoDock Vina, molecular dynamics simulations, MMPBSA calculations, and principal component analysis, were executed with Gromacs to discern the interaction dynamics between the compounds and target enzymes. A formulation comprising NS:MC:AG at a 215:50:35 µg/mL ratio yielded significant inhibition of pancreatic lipase (IC50: 74.26 ± 4.27 µg/mL). Moreover, a concentration combination of 215:80:35 µg/mL effectively inhibited both α-glucosidase (IC50: 66.09 ± 3.98 µg/mL) and HMGCR (IC50: 129.03 µg/mL). Notably, MC-derived compounds exhibited superior binding affinity towards all three enzymes, compared to their reference molecules, with diosgenin, Momordicoside I, and diosgenin displaying binding affinities of -11.0, -8.8, and -7.9 kcal/mol with active site residues of pancreatic lipase, α-glucosidase, and HMGCR, respectively. Further, 100 ns molecular dynamics simulations revealed the formation and stabilization of non-bonded interactions between the compounds and the enzymes' active site residues. Through a synergistic application of in vitro and molecular modeling methodologies, this study substantiated the potent inhibitory activity of the NS:MC:AG blend (at a ratio of 215:80:35 µg/mL) and specific MC compounds against pancreatic lipase, α-glucosidase, and HMGCR. These findings provide invaluable insights into the molecular underpinnings of these medicinal plants' anti-diabetic and anti-obesity effects and may guide future therapeutic development.

5.
Pharmacol Rep ; 75(6): 1454-1473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926795

RESUMO

Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.


Assuntos
Mordeduras de Serpentes , Venenos de Serpentes , Animais , Ovinos , Humanos , Cavalos , Venenos de Serpentes/uso terapêutico , Acetatos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/metabolismo , Fosfolipases A2/metabolismo , Fosfolipases A2/uso terapêutico , Inflamação
6.
Cureus ; 15(10): e47393, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021561

RESUMO

Osteoid osteomas (OOs) are non-malignant primary bone abnormalities marked by a central nidus surrounded by reactive sclerosis. They typically manifest as aggravated nocturnal pain that responds to non-steroidal anti-inflammatory drugs (NSAIDs). These growths are most frequently found within the intracortical bone and the diaphysis of elongated bones. Within the realm of uncommon conditions, intra-articular OOs (IAOOs) exhibit distinctive presentations, often leading to postponed or inaccurate diagnoses. We present a patient with OO at the distal femur, accessible through the knee joint, which was intraoperatively identified and localized using a needle pricking technique and treated by arthrotomy and mosaicplasty.

7.
Cureus ; 15(10): e47615, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021615

RESUMO

Congenital pseudarthrosis of the tibia (CPT) is a rare, dysplastic condition that is characterized by a "false joint" in the tibia, leading to potential disability. We present a rare case report of a 12-year-old male from India with a history of neurofibromatosis type 1 (NF1) and anterolateral bowing of the tibia since birth. He sustained a tibial fracture during play. X-ray evaluation confirmed the fracture, and a clinical diagnosis of CPT was established. The treatment involved corticotomy for deformity correction and stabilization using Ilizarov's ring fixation. The procedure was successful, with post-operative radiological evaluations showing significant improvement in the center of rotation of angulation (CORA) from 60° pre-operatively to 25° post-operatively. The patient was discharged with an external fixator and after seven months, transitioned to full weight-bearing ambulation with a specialized brace. The Ilizarov procedure proved to be a safe and effective treatment for CPT, offering benefits such as limb lengthening and ankle stabilization.

8.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865090

RESUMO

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Biofilmes , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Virulência , Fenômenos Biomecânicos
9.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811543

RESUMO

The present study was proposed to model full-length HBV-RT and investigate the intermolecular interactions of known inhibitor and libraries of phytocompounds to probe the potential natural leads by in silico and in vitro studies. Homology modeling of RT was performed by Phyre2 and Modeller and virtual screening of ligands implemented through POAP pipeline. Molecular dynamics (MD) simulation (100 ns) and MM-GBSA calculations were performed using Schrodinger Desmond and Prime, respectively. Phytocompounds probable host protein targets gene set pathway enrichment and network analysis were executed by KEGG database and Cytoscape software. Prioritized plant extracts/enriched fraction LC-MS analysis was performed and along with pure compound, RT inhibitory activity, time-dependent HBsAg and HBeAg secretion, and intracellular HBV DNA, and pgRNA by qRT-PCR was performed in HepG2.2.15 cell line. Among the screened chemical library of 268 phytocompounds from 18 medicinal plants, 15 molecules from Terminalia chebula (6), Bidens pilosa (5), and Centella asiatica (4)) were identified as potential inhibitors of YMDD and RT1 motif of HBV-RT. MD simulation demonstrated stable interactions of 15 phytocompounds with HBV-RT, of which 1,2,3,4,6-Pentagalloyl Glucose (PGG) was identified as lead molecule. Out of 15 compounds, 11 were predicted to modulate 39 proteins and 15 molecular pathways associated with HBV infection. TCN and TCW (500 µg/mL) showed potent RT inhibition, decreased intracellular HBV DNA, and pgRNA, and time-dependent inhibition of HBsAg and HBeAg levels compared to PGG and Tenofovir Disoproxil Fumarate. We propose that the identified lead molecules from T. chebula as promising and cost-effective moieties for the management of HBV infection.Communicated by Ramaswamy H. Sarma.

10.
Mol Divers ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749455

RESUMO

The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel ß-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.

11.
J Orthop Case Rep ; 13(8): 11-14, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654752

RESUMO

Introduction: Synovial chondromatosis is a rare benign tumor involving the major joints. This condition results from metaplasia of synovium into chondrocytes leading to formation of multiple loose bodies. Extra articular glenohumeral joint synovial chondromatosis involving long head of biceps is very rare. Case Report: A 38-year-old male presented with history of insidious onset, dull aching pain in right shoulder for 6 months. Clinicoradiological examination revealed calcific mass around the long head of biceps tendon. The calcific mass and loose bodies were removed en bloc. Histopathological examination concurred to be synovial chondromatosis. Conclusion: We hereby report a rare case of long head biceps tendon synovial chondromatosis of shoulder which was successfully treated by combined arthroscopic and open method. The results of surgical excision are excellent.

12.
Soft Matter ; 19(37): 7057-7069, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37706563

RESUMO

Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the "blob", which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives.

13.
Comput Biol Chem ; 107: 107957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37729848

RESUMO

Delta-9-tetrahydrocannabinol, a component of marijuana, interacts with cannabinoid receptors in brain involved in memory, cognition, and emotional control. However, marijuana use and schizophrenia development is a complicated and contentious topic. As a result, more investigation is needed to understand this relationship. Through the functional enrichment analysis, we report the delta-9-tetrahydrocannabinol to manipulate the homeostatic biological process and molecular function of different macromolecules. Additionally, using molecular docking and subsequent processing for molecular simulations, we assessed the binding ability of delta-9-tetrahydrocannabinol with the estrogen-related protein, dopamine receptor 5, and hyaluronidase. It was found that delta-9-tetrahydrocannabinol may have an impact on the brain's endocannabinoid system and may trigger the schizophrenia progression in vulnerable people. Delta-9-tetrahydrocannabinol may interfere with the biological function of 18 proteins linked to schizophrenia and disrupt the synaptic transmission (dopamine, glutamine, and gamma-aminobutyric acid). It was discovered that it may affect lipid homeostasis, which is closely related to membrane integrity and synaptic plasticity. The negative control of cellular and metabolic processes, fatty acids binding /activity, and the manipulated endocannabinoid system (targeting cannabinoid receptors) were also concerned with delta-9-tetrahydrocannabinol. Hence, this may alter neurotransmitter signaling involved in memory, cognition, and emotional control, showing its direct impact on brain physiological processes. This may be one of the risk factors for schizophrenia development which is also closely tied to some other variables such as frequency, genetic vulnerability, dosage, and individual susceptibility.


Assuntos
Cannabis , Esquizofrenia , Humanos , Dronabinol/farmacologia , Endocanabinoides , Neurofisiologia , Simulação de Acoplamento Molecular , Receptores de Canabinoides
14.
Front Pharmacol ; 14: 1214220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397484

RESUMO

The tender shoots of Caesalpinia mimosoides Lam. are used ethnomedically by the traditional healers of Uttara Kannada district, Karnataka (India) for the treatment of wounds. The current study was aimed at exploring phenol-enriched fraction (PEF) of crude ethanol extract of tender shoots to isolate and characterize the most active bio-constituent through bioassay-guided fractionation procedure. The successive fractionation and sub-fractionation of PEF, followed by in vitro scratch wound, antimicrobial, and antioxidant activities, yielded a highly active natural antioxidant compound ethyl gallate (EG). In vitro wound healing potentiality of EG was evidenced by a significantly higher percentage of cell migration in L929 fibroblast cells (97.98 ± 0.46% at 3.81 µg/ml concentration) compared to a positive control group (98.44 ± 0.36%) at the 48th hour of incubation. A significantly higher rate of wound contraction (98.72 ± 0.41%), an elevated tensile strength of the incised wound (1,154.60 ± 1.42 g/mm2), and increased quantity of connective tissue elements were observed in the granulation tissues of the 1% EG ointment treated animal group on the 15th post-wounding day. The accelerated wound healing activity of 1% EG was also exhibited by histopathological examinations through Hematoxylin and Eosin, Masson's trichome, and Toluidine blue-stained sections. Significant up-regulation of enzymatic and non-enzymatic antioxidant contents (reduced glutathione, superoxide dismutase, and catalase) and down-regulation of oxidative stress marker (lipid peroxidation) clearly indicates the effective granular antioxidant activity of 1% EG in preventing oxidative damage to the skin tissues. Further, in vitro antimicrobial and antioxidant activities of EG supports the positive correlation with its enhanced wound-healing activity. Moreover, molecular docking and dynamics for 100 ns revealed the stable binding of EG with cyclooxygenase-2 (-6.2 kcal/mol) and matrix metalloproteinase-9 (-4.6 kcal/mol) and unstable binding with tumor necrosis factor-α (-7.2 kcal/mol), suggesting the potential applicability of EG in inflammation and wound treatment.

15.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446321

RESUMO

Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Hepatite Alcoólica , Neoplasias Hepáticas , Humanos , Animais , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Lipopolissacarídeos/efeitos adversos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases , Hepatite B Crônica/complicações , Hepatite B/complicações , Cirrose Hepática/complicações , Etanol , Biologia
16.
J Biomol Struct Dyn ; : 1-17, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458811

RESUMO

Previously, barosmin has been demonstrated to possess anti-diabetic action. However, its effect to inhibit α-amylase and α-glucosidase, including glucose utilization efficacy, has yet to be revealed. Hence, the current study attempted to assess the efficiency of barosmin in inhibiting the α-amylase, α -glucosidase, and dipeptidyl peptidase 4 enzymes, including glucose uptake efficacy. Molecular docking and simulation were performed using AutoDock Vina and Gromacs respectively followed by gene ontology analysis using the database for annotation, visualization, and integrated discovery. Further, in vitro enzyme inhibitory activities and glucose uptake assay were performed in L6 cell lines. Density functional theory analysis detailed mechanistic insights into the crucial interaction sites of barosmin of which the electron-dense region was prone to nucleophilic attack (O-atoms) whereas hydroxyl groups (-OH) showed affinity for electrophilic attacks. Barosmin showed good binding affinity with α-amylase (-9.2 kcal/mol), α-glucosidase (-10.7 kcal/mol), and dipeptidyl peptidase 4 (-10.0 kcal/mol). Barosmin formed stable nonbonded contacts with active site residues of aforementioned enzymes throughout 200 ns molecular dynamics simulation. Further, it regulated pathway concerned with glucose homeostasis i.e. tumor necrosis factor signaling pathway. In addition, barosmin showed α-amylase (IC50= 95.77 ± 23.33 µg/mL), α-glucosidase (IC50= 68.13 ± 2.95 µg/mL), and dipeptidyl peptidase 4 (IC50= 13.27 ± 1.99 µg/mL) inhibitory activities including glucose uptake efficacy in L6 cell lines (EC50= 12.46 ± 0.90 µg/mL) in the presence of insulin. This study presents the efficacy of the barosmin to inhibit α-amylase and α-glucosidase and glucose uptake efficacy in L6 cell lines via the use of multiple system biology tools and in vitro techniques.Communicated by Ramaswamy H. Sarma.

17.
Front Pharmacol ; 14: 1174867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324470

RESUMO

Background and objective: Doxorubicin is extensively utilized chemotherapeutic drug, and it causes damage to the heart, liver, and kidneys through oxidative stress. Theobroma cacao L (cocoa) is reported to possess protective effects against several chemical-induced organ damages and also acts as an anticancer agent. The study aimed to determine whether the administration of cocoa bean extract reduces doxorubicin-induced organ damage in mice with Ehrlich ascites carcinoma (EAC) without compromising doxorubicin efficacy. Methodology: Multiple in vitro methods such as cell proliferation, colony formation, chemo-sensitivity, and scratch assay were carried out on cancer as well as normal cell lines to document the effect of cocoa extract (COE) on cellular physiology, followed by in vivo mouse survival analysis, and the organ-protective effect of COE on DOX-treated animals with EAC-induced solid tumors was then investigated. In silico studies were conducted on cocoa compounds with lipoxygenase and xanthine oxidase to provide possible molecular explanations for the experimental observations. Results: In vitro studies revealed potent selective cytotoxicity of COE on cancer cells compared to normal. Interestingly, COE enhanced DOX potency when used in combination. The in vivo results revealed reduction in EAC and DOX-induced toxicities in mice treated with COE, which also improved the mouse survival time; percentage of lifespan; antioxidant defense system; renal, hepatic, and cardiac function biomarkers; and also oxidative stress markers. COE reduced DOX-induced histopathological alterations. Through molecular docking and MD simulations, we observed chlorogenic acid and 8'8 methylenebiscatechin, present in cocoa, to have the highest binding affinity with lipoxygenase and xanthine oxidase, which lends support to their potential in ameliorating oxidative stress. Conclusion: The COE reduced DOX-induced organ damage in the EAC-induced tumor model and exhibited powerful anticancer and antioxidant effects. Therefore, COE might be useful as an adjuvant nutritional supplement in cancer therapy.

18.
Cureus ; 15(4): e37171, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37153276

RESUMO

Achilles tendon rupture is a common injury that occurs due to sudden dorsiflexion of the plantar-flexed foot. Both acute and chronic ruptures are frequently misdiagnosed and mistreated. Acute Achilles tendon rupture commonly occurs in middle-aged individuals (30-40 years). Although several operative procedures are available for Achilles tendon repair, the management of choice remains controversial and debatable. A 27-year-old male came to our clinic complaining of pain over the left ankle for the last five months. History revealed trauma caused by a heavy metal object five months ago. Physical examination revealed tenderness and swelling over the left heel. Ankle plantar flexion was restricted, and painful and squeeze test was positive. Magnetic resonance imaging was suggestive of a tear of the Achilles tendon in the left ankle. Surgical management was done with multiple techniques which included flexor hallucis longus tendon graft augmentation, end-to-end suturing (Krackow technique), V-Y plasty, and bioabsorbable suture anchor. Although complications such as scar stiffness and wound gaping are common in such cases, the postoperative outcome was excellent in our case according to the American Orthopedic Foot and Ankle Score.

19.
J Biomol Struct Dyn ; : 1-16, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37203884

RESUMO

Melanoma,also known as a 'black tumor', begins in the melanocytes when cells (that produce pigment) grows out of control. Immunological dysregulation, which raises the risk for multiple illnesses, including melanoma, may be influenced by stress tiggered through viral infection, long term effects of ultraviolet radiation, environmental pollutants etc. Borapetoside C is one of the phytoconstituents from Tinospora crispa, and its biological source has been reported for its antistress property. Network pharmacology and KEGG pathway analysis of borapetoside C-regulated proteins were conducted to identify the hub genes involved in melanoma development. Further, a molecular docking was performed between borapetoside C and targets involved in melanoma. Further, the top 3 complexes were selected based on the binding energy to conduct molecular dynamics simulations to evaluate the stability of ligand-protein complex followed by principal component analysis and dynamic cross-correlation matrix. In addition, borapetoside C was also screened for its pharmacokinetics and toxicity profile. Network Pharmacology studies and KEGG pathway analysis revealed 8 targets involved in melanoma. Molecular docking between borapetoside C and targets involved in melanoma identified 3 complexes with minimum binding i.e. borapetoside C- MAP2K1, MMP9, and EGFR. Further, molecular dynamics simulations showed a stable complex of borapetoside C with MMP9 and EGFR. The present study suggested that borapetoside C may target MMP9 and EGFR to possess an anti-melanoma property. This finding can be useful in developing a novel therapeutic agent against melanoma from a natural source.Communicated by Ramaswamy H. Sarma.

20.
Plant J ; 115(3): 662-677, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097088

RESUMO

Plants can retain a memory of previous pathogen infections to mount a more robust defense response during subsequent infections by developing systemic acquired resistance (SAR). However, the mechanism through which plants develop and retain infection memory is not known. Experiments have shown the association of epigenetic modifications of specific defense-related genes with SAR. RSI1/FLD codes for a histone demethylase and is required for the activation of SAR in Arabidopsis. Here we report the identification of RRTF1 as an epigenetic target of RSI1. RRTF1 expression is higher in pathogen-free distal tissues of the rsi1 mutant. Experiments with loss-of-function and overexpression lines suggest RRTF1 is a negative regulator of basal defense against virulent and avirulent pathogens as well as SAR. Enhanced expression of RRTF1 in a wild-type (WT) background specifically impairs SAR without impacting local resistance. RSI1 is recruited at the RRTF1 locus in a SAR-inducible manner and contributes to H3K4me2 and H3K4me3 demethylation. Introduction of the rrtf1 mutation rescues the loss-of-SAR phenotype of rsi1 plants. However, these plants fail to retain infection memory beyond 7 days post-primary inoculation, whereas WT plants retain memory for at least 11 days. Our results demonstrate that RSI1 and RRTF1 form a functional module for retaining infection memory in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...